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ABSTRACT

Fatigue data generated by three combined bending-torsion fatigue
reliability research maChiﬁes at The University of Arizona are proba-v
bilistic-graphically and phenomenologically anélyzed. Distributions
that are applicable to fatigué life and static strength data are dis-
cussed. Phenoﬁenological justifications for the use of these distri-
butions are presented. ‘

It is found that the normal distribution represents the cycles-
to-failure data at the highest stress levels best. The lognormal
distribution appears to fit the cycles-to-failure data at the lower
stress levels best and quite well at all stress levels including the
highest. - | 7 |

A regression analysis and least-squares goodness-of-fit test
was performed for normal and lognormal plots: In most cases, the
correlation>coefficient gave a better fit to the data using the nor-
mal distribution, but the difference between the two was so slight
that positive discrimination could not be made. '

From the probablllstlc—graphlcal analysis and the phenomeno-~
logical reasoning, it was concluded that the lognormal distribution

-gave a very satlsfactory fit to the cycles-to- fallure data at all
stress levels, that the normal dlstrlbutlon could be used to repre-
sent the cycles-to-failure at the hlghest stress levels without any
_ loss of accuracy.

The normal dlstrlbutlon is found to describe the static strength

- . distributions best..

The Weibull:diétribution was also studied and the probabilistic-
graphical plots were found not to lend themselves to as good a
straight'line fit to the cycles—té—failure data as désired. ~The plots
had many .kinks that could not be straightened by adjusting the loca- |

tion parameter. Phénomehologically it was. found that the Weibull
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would be the best distribution if the cycles-to- failure data were
those of only the faiied 1Leﬁs 1n a large sample or of field fallures
because these would be the fallures of the weakest in a sample thus

conforming to the extreme-value Weibull distribution theory.
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e
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I SUMMARY

Three combined-stress fatigue rellablllty resszrch machines
heve been built and calibrated to test relatively Zerge specimensA
'uﬁder-combined reverSed-bendihg and steady-torque loading condi-
tions. These maehines.are geﬁeratihg_data to be used in deter-
mining statlstlcal strength surfaces (three dimensional Goodman
diagrams) so- that specified reliabilities may be ces15ned into
components subjected to such combined: loading us;ﬂg the design
by reliability methodology. ' . ’

This report is based on'the-results'from 170 test specimens
which yielded cycles-to-failure, stress;to-failure, and endurance
'strength data at various stress levels and at the alternatlng
-stress to mean stress ratios of », 0.70, 0.90, and 0. The speci-
‘mens were made of SAE 4340 Steel of Rockwell 35 to 40 hardness
on Scale C, and processed accordlng to MIS S-5000B, MIL-H-6875,
'uand MIL-I-6868.

Specimens were tested at five levelsAof alternating stress
for the stress ratio of o, i.e.,-154,000 psi, 121,000'psi,

104,500 psi, 87,000 psi, and 78,000 psi. Eighteen specimens were
tested at each of the four lower stress_levels and twelve specimens
at the highest level. Specimens were tested at four levels of al-
ternating stress for the stress,ratio of 0;70, i.e., 110,500 psi,
97,500 psi, 76,000 psi, and 70,000 psi. Eighteen specimens were
' tested at each of the three lower levels and twelve specimens at
the highest level. | . | |

Ten notched and ten unnotched spe01mens were statlcally tested
to failure for the stress ratio of 0, “and the ultimate strength
was determlned. _

The Weibull, normal and lognormal distributions were fitted

to the cycles-to-failure and ultimate strength data. Graphical-
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probabilistic and phenomenological analysis was made of the data
to decide which statistical distribution best.represents them.
The normal and lognormal distributions gage good fits to the

cycles-to-failure data for the stress ratios of « and 0.70. The

Weibull distribution, although very versatile, is an extreme-value

distribution and does not exactly reflect the results of this re-

~ search. Phenoﬁenological reasons favored the lognormal over the

normal distribution to best represent the cycles-to-failure data

at all stress levels. At the highest stress levels, however, the
normal distribution can be used to approximate the lognormal dis-

tribution. This can be justified both probabilistic-graphically

" and pﬁenomenologically.

The static ultimate strength data of the notched specimens

.(stress ratio of 0) were found to be best represented by the normal

_.distribution both graphically and phenomenologically.
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" II INTRODUCTION

When a specimen is subjected to an alternating stress, even a
' stress below the static fracture strength, cracks will form and
propagate to cause rupture or failure. This phenomenon is called
fatigue, and the rupture is referred to as a fatigue failure. If
the same level of alternating stress is applied to several speci-
mens, the scatter in the number of cycles necessary to produce
fatigue failure is quite large. | : ' _

This scatter exceeds experimehtal error, and many testing pro-

~grams have been executed which show the scatter cannot be explained
by differing surface finishes, heat treatments, or iﬁhomogeneity of
the material Phy8101sts, metallurgists, and applled mathematicians
have proposed varlous theories which place a 31gn1flcance on the
scatter from a statlstlcal v1ewp01nt. g

The fact that this scatter in cycles-to-failure at a constant

stress level exists has been known for a long time. It has only
‘been quite recently, however, that the statistical nature of fatigue'
‘has been rec_ognizedf It is now coﬁsidered a fundamental and essen-
» tial characteristic of fatigue analysis. i .
For three years, fatigue testing, under the combined effects of
alternating bending and mean torque, has been carried on at The -
University of Arizona. This testing was done under the direction of

. Dr. Dlmltrl Kececioglu and the sponsorshlp of the National Aero- |
nautics and Space Administration. '

The testlng has been carried out on combined behding-torsion,
fatigue reliability research machines designed and built at The
University of Arizona. These machines are capable of applying and
maintaining an alternating bendingjstress and a meah shear stress

at different levels in a rotating round specimen. The machines and



specimens ‘are’ described in detail in previous reports (1, pp. 193-
©257) »- {2).__The .test specimens were notched with a theoretical

stress concentration of 1.45 and were of SAE 4340 Steel.

levels while holding constant alternating-stress-to-mean stress

- The. tests were conducted at various alternating bending stress

ratios.. The purpose was to determine statistically the effects of
sﬁggppo§ipg;§@§adymtq@qggugntoﬂpeqdipg on the S-N diagram for such
constaﬁy;stgess.ratios._fTesﬁigg,has been completed for three stress
ratios: 5, 0.70 (0.90 for endurance) and 0. The data and results
are given in Tables 1, 2 and 3 and Figures 1 and 2.

The data can be used-to generate statistical distributions of
cycles-to-failure and avstaiistidal S-N diagram at each stress/ratio
"as shown in Figures 1 and 2. This information can also be used to
determine the strength offtbe:sﬁééimens at specific cycles of life
és shown in Figure 3. » | _

;Aftef data for several stress ratios have been gathered, a
statistical Goodman surfacé—for the fatigue strength of a specimen
at specific cycles of life for various stress ratios can be gener-

ated as shown.in Figure 4. *. -

The stress ratio, re, is defined as

: B (1)

FoﬁtThexUnivéféityﬁéf Arizona research program the alternating stress
is a bending stress, and the mean stress is a shear stress. Using
the von Mises-Hencky theory of failure s, =0, and S =3 v (2,

: : m

' p- 87), the stress ratio then becomes

j'?r.i:—.-; Tiroriel :;;i--?s--i;/g . | . (2)



A. Stress Ratio of =

To test a ratio of » is to test the specimens with pure bending
stress only and zero shear stress. ‘This was done at five levels of
alternating stress and the cycles~to-failure wére determined. Test-
ing was also done, using the staircase method (3, pp. 113-114), to
find the endurance strength of the notched specimens. The results
are presented and discussed in a previous report (2).

The alternating stress levels at r = @ were

£
154,000 psi,

s, =

1 -
S, = 121,500 psi,

2
s, = 104,500 psi,

3 . .
s, = 87,000 psi,

Y , ‘
s ' .

ag = 78,000 psi.

The cycles-to—failuré at these various alternating stress levels are

~given in Table 1. The results are given innFigure 1.

oo

“These stresses are rounded out to the nearest 500 psi.



B. Stress Rafio of 0.70

To test at a stress ratio of 0.70, various levels of alternating
bending stress were used with the mean shear stress adjusted to main-
tain the constant ratio. Four levels of alternating stress ﬁgﬁevused.

They were

s = 110,500 psi,
a
1

s. = 97,500 psi,

a .
-2

s = 76,500 psi,

a

3 :

s, = 70,000 psi,/

~ Using the von Mises-Hencky theory, the shear stress at each level was

T, = 88,500 psi, 1, = 80,500 psi, 1, = 65,000 psi, T, = 57,000 psi,

1 2 3 4
to maintain a stress ratio of 0.70. The cycles-to-failure data are
© given in Table 1. The staircase method was used to determine the
distribution of the endurance strength at a stress ratio of 0.90.

The results are given in Figure 2.
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- To determine the distribution for stress ratio of 0, twenty spe-

C. -Stress Ratio of 0

cimens were tested to failure under tensile loading. Ten of the
specimens were regular notched specimens and ten were unnotched with
a diameter equal to the diameter at the base of the notch. The
Vresﬁlfs are given in Tables 2 and 3.

The streﬁgth distribution for a stress ratio of 0 was taken to
be the ultimate strength distribution for the notched specimens.
The ultimate is the end of the load carrying ability of the specimen,
and this is of interest to the design_ehgineer; The ultimate _
strength, és the intefsection of the modified Goodman line and the
abscissa, agrees with the literature (2, pp. 20-23),&4, p. 180),(5,
P 178)£6,P- 270). Figure 4 reflects the use of this conclusion.
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~: .. III THE DENSITY FUNCTIONS, MOMENTS AND PARAMETERS OF
STATISTICAL DISTRIBUTIONS

A. Density Functidns

The cumulative distfibution, F(xi), of a random variable x is
the probability that x assumes a value no greater than some speci-

" fied X;, or

&

naleTive ij,:f;:‘if:(xi,):.::‘Probabi]_i‘ty (x € x). - (3)

The probability dehsity function f(x) is defined as

- Probability (x. < x £ x,+Ax,)
f(x) = lim Al . S -2
Ax,+0 %3
l N
or
_ 4 | | -
- £(x) = §§ﬂ[F(x)]°.'_. (%)

It follows from the definition of the probability density function
~ that ' ’ | '

0o’ 0

C£()dx = P(x) | = F(®) - F(-=) = 1 - 0 =1,

=00 -0 p -



or the area under the probability demsity function is equal to one.
Also it should be noted that the cumulative distribution can be

‘obtained from the probalﬁlity'density function as follows:

1':.
CR® = | feax. O ®

= 00

The probability density.function is referred to as the pdf, and the

cumulative distributioﬁ'function as the cdf. .
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B. Expected Values and Moments of Distributions

‘The expected value of a distribution, or the mean of a random
variable X, is of interest in analyzing distributions. " This is

~ given by

0

- | : ()

E(x) = xF(x)dx ='ul

| oo

The Kth moment of the distribution about the mean, My, is given by

™ £(x)ax. A7)

(x—ul )

“K.=,E(X'“1)

These moments about the mean can sometimes be simplified if it

is noted that
E(2x;) = I[E(x)], - (8)
~ and

E(cx) = coE(x). - (9)
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The second moment about the mean, a measure of the spread or

dispersion of the distribution, is called the variance (u2) and is

'obtainedlas follows

| u2 = E(x'-ﬁl>2' o)
or S - _,
uy = E(x?): —Aﬂ-"éﬁilz"m + (up? /
;: : i:“_ A: "E(x)- B (1)
and  -. .l - v—ﬁ~ ;:“ :;i:fl ‘
LT “B(x?) = uy' (12). |
Therefore,
o , - |
B A UL G

The third moment about ‘the mean, called the skewness (u3), is

a measure of the symmetry of the distribution and is given by
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3, o 23)

'E(X—ul

. R 3 v \
Mg = u3‘ - 3u2?ul + 2ul . v ‘ (13a)

, is defined as

The coefficient of skewness, g

oy =‘ﬁ3/(u2)3/2,_ o | - (1)

and is a measure of the skewness relative to the spread of the dis-

tribution. If a, > 0, the distribution is skewed to the right.

 This means that a tail extends to the left. If ag < 0, the distri-

bution is skewed to the left, and if o, = 0, the distribution is

3
symmetrical. .
The fourth moment about the mean, called the kurtosis (“4)’ is

a measure of the peakedness of the distribution, and is given by

n

w, = E(x-ul) . : ' . : | ' (15)
N R T I TR C IO o . (15a)
y T My T Mgy 7SR5 AR LS R |
The coefficient of kurtosis. is defined as .
o = () /()2 o (16)
4 y// My |
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The value of o, iz wmzed to measure the peakedness of distributions

relative to each cther. The distribution with the largest o, is the

"

most peaked.
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(RS 48507 oIV DISTRIBUTIONS APPLICABLE TO FATIGUE

e T T s e U

' T-fThe statistical distributions which are frequently used in,
and” those which have been successfully applied to, the explanatién
of fatigue phenomena are-the following:

ST LTIEIAITL TS Ghussian or normal

TUET 557 Lognormal .

pre REETRowso 3. - Gamma | o .7
EAT ,_ 1T oenTilsl T e ;Erilangianv ’ o ’
TIivios smallow _ Tonoo :T5 S -"'Exp onential
el T lorcrinoe lor %-GJI:Extreme—value
;5‘;::k;;i;itj 4.5 Weibull
g%va;.:; | 8. 'Beta

The choice of the appropriate distribution to be applied to
specific fatigﬁé pheﬁémena has to be based on the statistical, as
well as, the phenomenological aspects of the generated fatigue data. .

These aspects are discussed next.
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A.  The Normal Distribution

The normal is the mbst widely used 6f‘all distributions. It is
best described as the distribution of events which are the result of
the sum of many small effects. Many random events are not normally
“distributed, and therefore there would be no reason to expect a nor-
mal distribution. - However, one justification for examining the
normal 1s the central limit theorem. |

The central limit theorem states that the distribution of the mean
of n independent observations from. -any dlstrlbutlon with finite mean and
variance approaches a normal dlstrlbutlon as the number of observatlons,
n, approaches « ., This is an important principle, because
although it applies to a large number of observations, even a rela-
tively small number of observations will tend to normality if the
parent distribution does not deviate too far from the normal.

The probability density function of the normal distribution is

e

_given by

(X;UJQ]. B ..(17)

Ny

. S 1 -

The mean is given by

_— - . ' ' S
E(x) 0/__ [wx exp —% ( ;E].]dx, (18)
or.

E(x) = p. - - (18a)}
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The variance of 4Zg¢ normal distribution is

|

Var(x) = 0?. | | N  (;9)

' The two parameters of thé normal distribution are the mean, u, aﬁd
the standard devé&tion, o. The normal is symmetrical about the ‘
mean and is definsd for values of x between positive infinity and
negative infinity, | | -

The cumulatiye density function of the normal distribution is

- given by

: ‘ 9 A
P(n) = | —1_ ex ,[—1/ [x"‘] ]dx. - (20)
N T ° - -
-0 . B
This integral can only be approximately evaluated. Tables of its
values exist for y = 0 and o= 1. , o
For nopmal distribution a, = 0, which shows that the distribu-

3 A
tion is symmetrical, and o, = 3'(75 pp. 123-124).
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.B. The Lognormal Distribution
A distribution closely associated with the normal is the lognor- -
mal, .This is the distribution of a random variable whose logarithm

- follows the normal distribution. The lognormal probability density

- function is

l
o
%
el
|
hx‘
. ~ )
[
]
[0e]
mof ¥
t_
-
(L'

f(x: w, o) = (21)

x is defined from zero to positive infinity. The distribution is
'skewed to the right with skewness increasing as ¢ increases. |

The mean of the lognormal is

nyl s L .
p= et FE o - (22)
where
1 n . ) . .
"no-. =) ' -
u = .Z log X, _ _ ‘ | (22a)
i=1l . : : .
and
1 iy 2 :
LLEF- S P — it .
o [n_l igl(l_og x; =u ") ] | (22b)

and the variance is _ . -
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) 5 5
gt "
02 : é‘d')’w (e® - 1).

The coefficients of skewness: o8 'kurtosis' are (7, pp. 127-128)

- # 3 gn2
a, = (&7 17

+ 2), I : (23)
3 k .

and

+ 6e +6). (2u4)
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C. The Gamma Distribution

_ The gamma distribution is useful for'repfesenting the distribu-
tion of quantities which cannot be negative. It is appropriate to
define the distribution of the times required for a total of exactly
B indepeﬁdent events to take place if they occur at a constant rate
'n. It could be used to represent.timeS*té—failure‘of.components if
the subcomponenfs fail independently with a consfant rate n.

The gamma probability density function is

- f(x: B, n) = T?B X T e ..‘ | . (25)

S|

It is defined for x 2 0, B > 0, and n> 0. TI(B) is the gamma'func-

d

tion.

The cumulative distribution of the gamma is

_ 8 v .
F(x: B, n) = P?B) A xB-1 e-nxrdx. . (26)
0

'The gamma distribution has a wide variety of shapes, and this
accounts for much of the use of the model.

The mean is

= B \ :
u"na. : .(27)

and the variance is
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' 2 _ B
T ors wenonn 9% T (28)
- "“— s - - N n 4

“The-coefficients of skewness and kurtosis are (7, pp. 123-120).

o 22
3B

‘ and

_3(8 + 2)
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D. The Erlangian Distribution
: | _
- If n is restricted to positive integers, the gamma distribution
is referred to as the Erlangian distribution. The distribution»is
sometimes more realistic in this form, as for most applications the

fraction of an event has no meéning (7, p. 90).
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E.. -The Exponential. Distribution
AN TR Al aotintatdilidal i

. The exponential‘diStribution is often used as a times-to-failure
distribution. It is used when the failure rate is assumed to be con-
. stant. It is the times-to-failure distribution if these failures are
independent and happen at a cohstant average rate.

The.probability density function for the exponential distribu-
tion is. (7, pp. 123-124).. | |

£(xm) = ne , S »‘ (29)

"and is defined for x 2 0 and n > 0. The mean is

u= [xn'e“""dx P . (30)
0 ’ . .
or
| u T ' » : -(30a)
The variance is
o2 = -}2—~ . - (31)
n .

The coefficient of skewness is

@, =2, - o - (32)
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Tand "the. coefficient of kurtosis is

S.TLuT larTaos ﬁQQ“; 9._ S , c (33)

- .w"From.the valiues of ey and o, it is seen_thaf the exponential

-distribution is skewed to the right and more peaked than the normal.

e s A -~ - - -
- S -s o - -
w L, e . - -
TR PR - -
=~ - - Pt . o
ST D e LEL -
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F. TﬁelngEEﬁélvalue;Disfbibutions

-

'_ The extreme value dlstrlbutlons should be considered in a dis-

cu331on of fatlgue llfe dlstrlbutlons._ In many applications the
d}strlbutlon of the’ largest or smallest elements of a sample are of
1nterest.- In fallure “analysis the distribution of the weakest com-
ponents (smallest values) would be of interest. A dlstrlbutlon of
:'the minimum of n 1ndependent values from a parent distribution that
1s unbounded to the left and is of exponential decrea31ng type is an
extreme-value distribution. This distribution is the Type I for

minimum values.

In reallty, fallure tlmes cannot be negative. Therefore, the
real life distributions of tlmes—to-fallure should be bounded by
zero.on the_left, -One such extreme-value distribution is the Wei-

bull, referred to aswtpedType III extreme—value distribution. -
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G. The Weibull Distribution

- i

The only distribution-that was actually dev1sed for use w1th
fatigue data is the Weibull. It is an extreme value dlstrlbutlon
of the:smallest values.. Using the Weibull to represent the break-
ing strength of a material has aléo been justified by Freudenthal
and Gumbel (9). Tonoo= oL '

The probability den31ty functlon for the Welbull is (7, pp.
131-132)

e L et v T e -

: B-1 (L B
f(x:: By n, y) = 8 Fi——Jq -~ exp [- Fi——Jq 1. - (34)
- _non {n .

o B > 0 is the shape parameter.

Yy 2 0 is the location parameter.

n > 0 is the scale parameter.
'?he mean of the function 1s (ll, pp. 2- 15)
. Lt Ll -::"_'::_"':.j:. .= H = Y + n r [’E‘ + l} . . (35)
The variance is (7, p. 132)..
H 02 = n2[r [%+ 1} -T2 (% + l]]. (36)

The coefficient of skewheéé is (7, p. 132)

_ (1 +3/8) - 3r(1 + 2/8) T(1 + 1/8) + 2[r(L + 1/8)13

A . (37)
Teo oL AT+ 2/8) - [T(L + 1/8)12)3/2
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and the coefficient of kurtosis is (7, p. 132)

= F(1+u/s)—‘+r(1+3/s)[r(1+1/e)J+sr(1+é/e)’[r(1+1/8)]243[r(1+1/8)3l+
| {r(1+2/8) - [r(1+1/8)1%}2

o, - (38)

The cumulative distribution function is given by

" «
F(x) = 1 - exp [~ Fiﬁijq ]. o - (39)

This is the unreliability function. The reliability function is defined

as

R =1-Fx), - (40)
or . . - R(x) =.exp [~ [E_E_IJ ]’ .' . “(40a)
and 3 < - B o

CRx) T XP [[ n ] oo (405)

If the location parameter is zero,

1 . E.B
R X) €xXp n H)

i

then

"
f———\.
S%
S——/
m.

’ 1
~log [§T§SJ

and

log log [Rlx)J B log x - B log n. ' (40c)

N
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This equétion is of the form

o]
]

“AX + B

) R ,
-=-log log [—}i—(—)-{-)-]

=
Lhte
it
id

{
~

u

o
=
A
"

log x, .
-8 log n - o o (41)

]

Using Welbull probablllty paper and plottlng the times-to-
failure results, 1t can, be determlned if -the Weibull dlstrlbutlon
‘describes the aata If a stralght line fits the plotted p01nts,

_then the Weibull distribution is sufficient for describing'the data.
" In addition, the parameters of the distribution can be determined
from this plot. The slopé& of the line is B, the shape parameter.
n is the abscissa corresponding to an‘erdinate_value of 63.2 pef-
cent on the Welbull plot. If a straight line fits the plotted
data p01nts, then y = 0. If not, and a curve drawn through the
points exhibits a concave downward behavior, then the data may be
adjusted so that a stralgbzwiine fits them satisfactorily. Then
the value of . Y can be determlned by the method glven by Lochner

(18). e
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H. The Beta Distribution

- The beta'distribution_is useful to describe variations over a
finite range. It has limited use for prediéting cycles-to-failure
‘but is included here for completeness. Thé beta'probability density
function is (7, pp. 127-128) ‘ :

) L _T(B+n) -l B-1 |
f(*ﬂ Bf n) = TTES"TTET'Xf (1 - 3) | ‘ (42)

for x defined over the interval zero to one, and n and y > 0.

. The mean is _ . . ' ’ .

. S (43)
' The variance is <

o2 ; B
B+ M2 (B+n+1)

. T (un)
The coefficient of skewneés is
_26-n) (n+p+ Y2

o
% (n 8+ 2)

3

C(u5)

The coefficient of kurtosis is

o =38 +tn+1)[2(n+ B2 + Bn(B + 1 - 6)]
4 | -

Bn(B + n+ 2) (B +n + 3)

(u6)



29

CfEal v ocaat: deitmr. 3

V THEORIES or FATIGUE FAILURE AND THE DISTRIBUTIONS

o ASSCCIATBD WITH THESE THEORIES

e e e e : -

e In thls sectlon the three predomlnant theories of fatigue failure

are dlscussed. Also an attempt is made to show how each one of these phe-

nomenologlcal theorles leadsto the use of a partlcular distribution.

Many tests have been performed on fatigue failure, and some

characterlstlcs have been ‘observed. Beyond a certain number of cycles
of operatlon the occurrence of fracture is ‘probabilistic (10, p. 214).

ThlS number is stress dependent. Many cases show a positive skewness

to the frequency dlstrlbutlon of fatlgue life (10, p. 214). The scat-

"ter in fatlgue llfe decreases as the stress is 1ncreased (10, pp. 214-
as). |
Fatigue life of a specimen can be divided into four (10, p. 218)
stages. The first stage of n, cycles is’-the completion of work harden-

ing. The second stage of n_, cycles is the time in which the first

microcracks are formed. Thz third'stage of.n3 cycles is the period
during which the submicrocracks grow-and link to form a crack of detec-
‘table size. During the fourth stage;of n, cvcles these cracks propa-
gate across grains until fracture or rupture occurs. The end of stage
" 3 and the beginning of stage 4 are not clearly defined, and the period
between formation of a detectable crack and rupture is a small part of
the total life. Therefore, the contributors to the scatter in fatigue
~life are the second and third stages. | |

It is the rate of crack growth which determines the number of
<cycles before failure after the first cracks have been formed. At low
AStress levels, just above endurance, cracks have been found to exist
‘after 50% of fat;gue life. At hlgher stress levels cracks appear just
before failure (lO,WEigure_lSQ; p. 208). | . |
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Sapdisatont o ia D00 e ethoals

Aa; The Weakest- Link Theory

The weakest link theory treats each compbnent as a series of
many éubcomponents. It interprets the stréngth of the cbmponént in
terms of the minimum values of the stréngths of the subcomponents.
Fach link will have gracks with a certain distribﬁtion, and the
cbmponentﬂwill:fail-when;the weakest link fails.

-zz:- The cracks or defects are distributed-thrqughout the specimen.
of fhe n total sﬁbcomponents the least strong determines the
strength. The distribution of interest will be ‘that of the minimum
values of the subcomponent strengthsvin n subcomponents. If the

life cycles of the.subcoﬁpénents have a probability density function,
£(x), the cumulative diétribution function, F(x), is the proba-
bility that the life cycles do notAgxceéd X aﬁd is defined as

~

jf(x) " J £(x) dx. ' : S (u7)

. The life lengths of the gggﬁegated componenf would be distributed
according to the -smallest order statistic; thus,

e R si-nerel g

Consequently, the pfobability density function, fn(x), of the
smallest value of the n life cycles is (11, p. 2-6)

fn(x) =‘n[l‘— JE‘(x)]n“l f(x). - . (u8a)
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~-The Weibull distribution is a smaliest value distribution. If

the subcomponents have a life distribution of the Weibull form, then

o _[1‘__!_} g
TeLnT . - | 1= . _ 1
Tl S TRl Loz F(x) =1 -e s S ©(49)

and the--cumulative distribution of the aggregate from Equation 48
becomes 5_.j;\;“.;;; -

e T fu,tw,s:j;:“; “ﬁfl,..' - 5 . | '
coer meene ] e

oLl L

aoo s R e BB e

There are also other subcomponent populations which will lead to

the Weibull distribution for the specimen if the weakest link theory

is-accepted. Fisher and Tippet (12) have shown that many distribu-

tions, including the normal, can have their smallest values

distributed as an~extremefyalue distribution.



32

" BY The Parallel Strand Theory

To understand this theory it is convenient to consider the
strands of a multistranded rope. The component is made up of subcom-
ponents such as the strands of a rope and cannot fail until every
strand has failed. Life lengths of the subcomponents determine the
life pattern of the component. The life pattern of the component is
the convolutlon of the llfe patterns of the subcomponents
) _h}f_the subcomponents had life lengths that were independent and .
1dent1cally distributed, the life length for the component would be
the n-fold convolution of the subcomponent distributions. If the
~subcomponents have a probability density function f(x), the life

length pdf, g(x), of the component will be (11, pp. 2-7)~

Av'g(%) = [f(x.)]n*_ | B (52)
boo . ._
" ['fﬁx)]n* = tfgvx)j'*[f(xv)ﬁ-lﬁ" . (53)
. and
[f<x)1(5-l>*=[f<'x)j*[f(x_)j<ﬁ_'??5‘  ~ BN Y
e |
_[fl(x5]2'%= LG0T #LEGO] I
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or
O L X S T

Assume the life distributions of the parallel strands are expo-

‘nentially distributed; then

CUEG) = e ™ L (55)

and

[£(x)1%" = [ne‘“t][nef“9x“t’] at (56)

o 0 ’ '
and
. & ) ‘X_ :

[f(X)]2 = n2 J e ¥ dt . (56a)
o

[E(x)]2 = nte™ | . (56b) .

0 : S .

Therefore,
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(£()1% =n?x ™, 0 (56¢)
Similarly,
3% 3 (X _qt -n(x-t) |
[(£(x)1" =n t e e dat, (57)
e % 1 _: - i
()% = 50° &% e, (57a)

and (11, pp. 2-7 and 2-8)

[e(x)1" ‘=§%r1 AP o (58)
- Consequently,
: o N | - | |
[£601™ = oy T e (s9)
or
: o ﬁn.xnrl i o
.‘gn(X) = [f(X)] = Wa n . . (59a)

It is seen from Equation 59a that the pdf of the component is defined
by a gamma distribution.
If the number of strands approaches infinity, as it would for a’

metal specimen, the life length distribution gn(x) approaches the
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normal function. As the shape parameter of the dlstrlbutlon, n,
increases, the gamma dlstrlbutlon tends to normallty with a mean of

n/n and a variance of n/n (11, p. 2-8).
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C. The Proportional Effect Theory
i

A component is assumed to fail.whenbthe size of a crack reduces
the cross sectional area to a certain value. A crack propagates at
an éxponential rate. The crack length is proportional to the length
of the preceeding stage. Assume the size of a fatigue crack at various
stages of its growth can be fepresented by the sequence xj < Ky < eee
X, € een %, where.xr is the size of the crack at the rtP stage.
X is the size of the crack when the cross sectional area is reduced
to a value that cannot sustain the applied stress, and rupture occurs.
The crack growth X, - x,_qat the ith'stage is pr0portional to the
| crack size ®i 1 of the preceeding stage, or

X, - X, . = 3.X, . . i _ (60)

. s . .
x .can be interpreted to be the size of minute flaws in the original
'component. al, 32, ..+ are independently distributed proportionality

constants (11, p. 2-8). Then

KT M TR o (60a)
and
X, = xifl(ai‘+ 1). B (60b)
It follows that

Xi1 T %0005, 1), ' - (80c)
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X
1
-
~
Q

+ 1), , 'f S (80d)

AE 1N . S LT = T e fieeTT = . ) : o
- % (8 + 1) ‘(6 e)
;‘he,n - oonae =

T B N -X2‘= Xo(al+l)(a2+l), . : C (61) N

+1), - (61a)

;wg,;;iZt.:%;¢fx; Gz,:xd(al+1)(a2+1) cee (ai'l

and L . - ~ — =
Bt el S ST A : : - ) |
e - :-.wa*i f*§q$alf1)(§2+;) .. (ai_l+1)(ai+1). (§1b)

-7 The component is assumed to fail when the size. of the crack
reaches X The characteristic life length of the component is the

distribution of xn; where
X = x0(81+l)(82+l) o (§n+l). . (61c)

From Equation 6lc it may be seen that xn.is the‘product of indepen-
‘dently distributed random variables.' The logarithm of X is the sum

‘of independent random variables, or

log x = %?g-fo +-%og (Bl+l) t .es +»;9g (3n+l). | (62)
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The central-limit theorem sfatesvthat l§g xh is approximately nor-
mally distributed if n is large. If log xh is normally distributed,
then x_ is lognormally distributed (11, p. 2-8). ' _

At higher amplitudes of alternating stress many cracks are formed.
The growth rate of each of these cracks follows the proportional-effect
theory. However, the crack lengths interlink and cause a random reduc-
tion of component area. At lower stress levels only one crack usually
exists. The growth of this single crack also follows the proportional-
effect theory.’ |

_Freudenthal (13) proposes a derivation for the distribution of
‘component failure using the proportional-effect theory. It is based on
the assumption that a single crack is formed and it propégates to cause
failure. '

Let Cys Cps voes Cp be consecutive cycles applied fo a specimen at -
- a constant stress amplitude, and let the extent of damage done to the
area M by the cycles ¢ .

cees Cp be M The increase in the damage

1> ©2° k'
. done by cycle Cx is Mk - Mk—l' This increase is proportional to the

effect of the cycle 1 and is related.by some’function ¢(Mk); conse-~

qﬁéntly,
Mk - Mk-l = ck ¢(Mk)’ - . (63)
M -M
k k-1 :
C, = . (64)
k ¢§Mk) ? | |
-and

\.

: n - R ‘ . , ’
L e = kZlL(Mk-rg(_l)/¢(Mk)]. _ - (65)



39

o If ‘edch cycle ‘contributes only sllghtly to the dlsruptlon of the

area “the sum can be replaced by

e e

¥
i
.("

z Ck = __(‘_)‘-c : - (66)

If the effect of each cycle is directly proportional to the extent of

damage produced by the previous cycle, then ¢(M) is constant, and

= —_— = t ' - i
) e, = k' log Mn/Mo ‘ (67)

-

where M is the extent of the initial damage.

The central llmlt theorem states that the sum of n 1ndependent
‘ramdom variables tends toward a normal distribution as n increases.
‘If the number of cycles is large, then Log_Mn/Mo is normally distri-
buted. . .

Making the assumption that the average rate of damage is pro-
portional to the damage produced by a given number of cycles and
that the cycles to produce a given amount of damage is inversely
proportional to thevrate, the number of'cycles to fracture is
inversely proportional to M. The reciprocel transformation of the
lognormal distribution is also lognormal, logbx = - log 1/x. The
distribution of fatigue life at a given stress level is, therefore,
.lognormal (10 Pp. 235-236). v

The derivation of Freudenthal, which shows the life length dlS—
tribution of the component to be lognormal, explains the previously

mentioned positive skewness of failure distributions. The interlinking
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of cracks to cause random reduction in the cross sectional area at
-high stress levels indicates that these life length distributions are
normal. This has been supported by our results and the results of

other testing programs.
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= VI ANALYSIS OF THE FATIGUE RELIABILITY AND STATIC STRENGTH DATA
LB Vel R - GENERATED . IN THIS RESEARCH

The decision as- to:which distribution shduld be chosen must be
based on the plots of the cycles-to-failure and stress-to-
f4ilure data, and phenomenological reasoning.. The data was generated
on the three combined bending-torsion fatigue reliability research
machines;designed and built at The University of Arizona. The times-
to-failure were determinéd to the néarest second by precision clocks®
which started &s soon as“a-test was underway and stopped when a micro-
1imit Switch-cut the power to the clock off as soon as the specimen
' failed.'lTheTtime was then converted to.cycles—to—failure using the
rotational speed of-the machines. The times-to-failure and their
conversion to cycles-to-failure are given in Appendix A. The speed
'&f the machines was calibrated to + 5 rpm. The rotational speeds of

the machines are: " ° »-=7T7C

De e e s

Zi-iil-T “Machine 1 -7 . 1786 + 5 rpm

"2 ¢ Z:. Machine 2 - 1784 + 5 rpm o

"For the data generated in this research and given in Tables 1,
2, and 3, it was decided to first piot the cycles-to-failure and
stress-to-failure data on probability paper, study the results, cor-
relate them with the previously discussed behaviors of the statis-
tical distributions and the phenomenological aspects, and then draw

conclusions as to which distribution best represents the data.

A

“Three stress levels of stress ratio = were run w1th a p031t1vely
driven revolution counter.
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‘ Based on the discussion of the distributions relevant to fatigue
and static strength, it was decided to use 6nly the normal, lognormal .-
- and Weibull distributions. Conseqﬁentlj, all of the cycles-to-failure
data were plotted against median fanks ( 17, Table 1 ) on Weibull
and lognormal probability paper for all stress lev-
els of stress ratios « and 0.70. The data for the two- hlghest stress
levelsat each stress ratio were plotted against median ranks on
normalprobablllty paper also. '
In Flgure 5 are plotted the cycles -to-failure data for T z
" on Weibull probability paper. In Flgure 6 are plotted the cycles to-
. failure data for~rs = and’sa = 154,000 psi and 121,500 psi, on nor-
-mal probability paper. In Figure 7 are plotted the cycles-to-failure
data for.rs = o and s, ='154;000 psi, 121,500 psi, end 104,500 psi
on lognormal probability paper. In Figure 8 are plotted the cycles- _
to-failure data for o= and sa =.86,000 Psi and 79,000 psi>on log-
normal probability paper. o » '
In Figure 9 are plotted the cycles-to-failure data for r, = 0.70
on Weibull probability paper. In Figure.1l0 are plotted the cycles-
to—feilure data for r, = 0.70 and sa'= ;10,500 psi and 97,500 psi on
normal probablllty paper. . In Figure 11 are plotted the cycles-to-
- failure data for r, = 0.70 and s_ = 110,500 psi, 97,500 psi, 76,500
psi, and 70,000 psi on lognormal probability paper. Lastly, in Figure
12, are plotted the static tensile ultimate strength data for the
notched specimens on normal probability paper. ' _ '
In Figure 5, the data for the stress level of 154,000 psi plots
' concave upward. _The‘location parameter, vy, could not be adjusted to
give a better straight lipe fit ( 18, pp. 5-8 ). The raw data would
Jend themselves to a fairly gqod straight line fit at the stress levels
of 121,500 psi, 104, 500 psi, 86,000 psi, and 78,000 psi, if these lines

' were drawn. The lines on this Weibull probability paper were not

drawn so that the raw data would stand out.
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. IﬁTFigufe'G;?the data for the stress level of lSH,COO'psi'is
céncsve?upward‘indiCating'a distribution that is skewed to the left
(<263 p. 14 ). -The-data for the stress level of 121,500 psi gives
a’straight line fit~wifh good eofrelation, as shown in Table 4, on
~normal paper.  --- . - ' . |

T Figures 7 and 8, and Table 4 show that the data for the stress
levels of 121,500 psi, 104,500 psi, 86,000 psi, and 70,000 psi give
. straight line fits with good correlation on lognormal paper. A
strdight line can be fitted to the data for the stress level of
1su;oooipsi,‘ although with not as good a correlation as at the
ofhef"Stress‘levelsb>The-lack-cf eh'extremely good fit may be ex-
plained by the fact “that only twelve data points are available at
" this stress level. = 4= *° ,
e Flgure 9 where the plots of the data for stress ratio of 0.70
'are "given on Weibull-probability paper, shows,that a straight line
would fit the data at the lower stress levels of 76,000 psi and 70,000
psi with good correlation. The data for the higher stress levels of
- 110,500 psi an&'97;500 psi;:are concave downward. The adjustment of
theﬂidcation parameter did not yield a better straight line. The
attempt to adjust for better fit was hampered by the lack of a larger
number of data points. '

Flgure lO, where the data for the stress ratio of 0.70 are plot-
ted on normal probability paper, indicates concave downward curves
for the stress levels of 110,500 psi and 97,500 psi. '

Flgure ll and Table U4 show good straight line fits at all stress‘
levels for a stress ratio of 0.70 on lognormal probability paper

In Figure 12 and Table 4, the ultimate strength data exhibit a good
straight line characteristic on normal probabil ity paper. The line
‘has a steep slope indicating a narrow spread of the_déta. This
is to be expected. L ‘ Static sfrength distributions
are usually normal.  Juvinall ( 6, p. 351 ) states that static tests
have a small statistical variation. Bompas~-Smith ( 14, p. 344 ) also
states that the probability density function of tensile tests can be

expected to be normal.
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Havihg described each figure, an overall analysis of each will
be made in conjunction with the pﬁenomenological aspects of fatigue,
discussed previously. A straight line can be fitted to all the log-
normal plots with fairly good correlation, as may be seen in Figures
7, 8, and 11, and Table 4. Phenomenologically, the acceptance of
xthe proportional-effect theory, discussed earlier in this report;
would result in the acceptance of the lognormal as the life leﬁgth
: (qycles—to—failufe) distribution of components subjected to fatigue.
The conclusion that the characteristics of.thé lognormai distribution
are associated with fatigue failures and that the lognormél is the
failure governing distribution for fatigue is supported by both theory
‘and experimental results. ) _ ’

‘ Herd ( 19, p. 5 ) élso reasonsvtha{ the iognormal is an appro-
priéte distribution for the cycles-to—failﬁre data. He states that the
lognbrmal distribution applies tb situations in which several indepen-

| &ent_factors influeﬁce the outcome of an event, not additively, but
éccording to the magnitude of the factor and the age of the item at
the time the factor is applied. If the effect of each impulse is |
directly proportional to the momentary age, x, of the item, then log ¥
would be normally distributed. Consequently, the x's would bé lég—
normally distributed. _ ' '

- Yokobori ( 9, p. 194 ) éta%esvthat a positive skewness to the
distribution of fatigue life often exists, and the logarithmé of
cycles-to-failure can be approximated by a normai distribution.
‘Results of tests that show the positive skewness are given by Yoko-
bori ( 10, pp. 211 - 212 ). The derivation by Freudenthal ( 13 )
and the discussion of the proportional-effect theory ( 11, pp. 2-8 )
also result in the lognormal as the distribution of cycles-to-failure
for fatigué. Bompas-Smith (.14, -p. 345 ) states that fatigue results
~at a constant stress level frequgntly conform to a lognormal distri-
 bution. F. Epremian and R. F. Mehl (¢ 15) suggeét the values of the

lbgarithms of cycles—tb—failuré are normally distributed about a
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mean value. Juvinall ( 6, pp. 350-351 ) shoﬁs results of tests of
fatigue life data that approximate the lognormal distribution.

Figure 10 shows curves that are concave downward. James R. King
( 16, p. 7 ) states that a concave plot on normal probability paper
indicates a right-skewed distribution and that a logical choice would
- be the lognormal. Bompas-Smith ( 14, Figure 12, p. 349, and Figure
blS, P 350‘) confirms that a curve of this shaﬁe on normal probability
‘paper gives rise to a straight line fit on lognormal probability
paper. , | B |

Figure 9 indicates that the lognermal distfibution would provide
~good fits at stress levels of 110,500 psi and 87,500 psi for the stress
i_ratio of 0.70 because the curves are concave downward and Bompas-Smith
( 14, Figure 12, p. 349 and Figﬁre 15, p. 350 ) shows that plots of
this shape on Weiball pfobability paper give a straight line on log-
normal probability paper. ‘ ' o

. The extreme-value function could phenomenologically be the‘life
length distribution if only the weakesf of the specimens were tested
to failure. This does not completely describe the testlng progran
by which this data was generated The spe01mens to be tested were
randomly selected and all were tested to failure. Although the
' Weibull plots show that a ‘straight line fit to much of the data
is plausible, it is in no caeeaﬁetter than the stfaight line fit pro-
- vided by the lognormal plots o - ‘

It is dlfflcult with the elghteen data p01nts at each stress
level to determine the exact shape of the Welbull plots.. It would
"be 1mp0331ble to determine the shape with the five or seven data
p01nts recommended by King ( 16, p. 12 ). This is true for any
other distribution. With only a few data boints, no absolute state~
ments can be made from the'p;ota. That is why the plots must be
used along with‘phenomenological reasoning to determine the failure

governing distributions.
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Phendmenological reasoning can also be used to justify the use
of the normal as the failure distribution at the high stress,.qr
1oQ fatigue life, levels. Juvinall ( 6, p. 351 ) states that short
life fatigue tests approach static test‘chéragterisfics which have |
small statistical variations. BompasQSmith ( 14, p. 344 ) states
that if the strength of a component is a functiop of several varia-
zbles, the failure distribution tends to normality. Yokobori ( 10,
p.v2lS ) states that the scatter of fatigue 1life increases as the
_ stress level decreases. This is verified by the data in Tables 1
'and-ug and Figures 6 and 10. . ,

- A computer program was written to fitlthe best straight line to
"the data (straight cycles-to-failure, and logarithms of the cycles-
to-failure). This program uses the least squares method and fits the
best straight line to the data for stress ratios « and 0.70 on normal
and.lognormal plots. The program also fits the best straight line
tothe data for the étress ratio of 0 -on the normal plot and computes
the correlation coefficient. | _

The correlation coefficients for the data fits at the various
stress levels differ only slightly bstween the normal and lognormal
distributions. The maximum difference is 2.2%,vas may be seen from
Table 4. Basing the analysis on the relatively few data points ﬁakes
it impossible to discriminaté bétween the normal and the lognormal
distrib utions solely on the basis of the correlétion.coefficient.

The straight line fit to the data for stress ratio 0 is very
"good, because a very high correlation coefficient was obtained. The
:coefficients of correlation and the equations of the best straight
lines are given in Table 4. Phenomenological reasoning, experimental
results and graphical analysis dictate that the normal distribution
should'bes{ describe the stress-to-failure dataa stress ratio of 0.

Although in many cases the straight line fit to the data on
normal probability paper gives a higher correlation coefficient,

the‘lognormal has been chosen to represent the cycles-to-failure



distribution. The small sample size used in this research has not
provided sufficient opportunity for significant discrimination be-
tween the normal and the lognormal distributions. Furthermore, the
lognormal distribution has been phenomenologically justified and is
- seen to better represent the data,when all stress levels are consid-

'f;erﬁda-than.any other applicable distribution discussed in this re-

.. port.: - A
BTL LOEL ToT CeItulns = T
e A - _ i P
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VII CONCLUSIONS

1. The Weibull distribution fit to the cycles-to-failure data
at various stress levels ( Figures 5 and 9 ) shows that the distri-
Pution might approximate'the cycles-to-failure distribution of the
specimens; however, the data points do not appear to lend themselves
to a good straight line fit because of. the kiﬁks in the plot. Sta-
tistically, the Weibull distribution is an extreme-value distribution
ana does not describe the type of data’generated in this research
program. , ; | )

2. The normal distribution fit to the cycles-to-failure data
at the various stfess levels for the stress ratio of = and 0.70
( Figﬁres 6 and 10, and Table 4 ) shows that the normal distribution
might represent the cycles-to-failure distributions of the specimens,
because there is good straight line fit and there-is no significant
difference between the correlation coefficients for the normal and
the next apprbpriate distribution, the lognormal. Phenomenologically,

the normal distribution can be justified to approximate the cycles-

tq—failure distribution at the highest stress levels only.

3. The lognormal distribution fit to the cycles-to-failure
data ( Figures 7, 8, and 11, and.Table ) isvgood at all stress
levels for stress ratios of « and 0.70. The lognormél distribution
~ phenomenologically describes the cycles-to-failure distributions of
the specimens best at all stress levels.

4. Phenomenologically, statistically and probabilistic—gréph—
»ically'the normal distrﬂaution gives,the]:est fit to the static ul-
timate strength data for the stress ratio of O‘( Figure 12 and
Table 4 ). The straight line fits the data on normal probability
paper with good correlation and has a steep slope showing a small

dispersion.
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~5.. The difficulty of discriminatiﬁg between the normal and log-
normal distribution fits to the cycles-to-failure data is attributed
to thé small sample size; namely, 12 specimens at the highest stress
levels and 18 specimens at the other stress levels. It would be of
great interest to see the degree of discrimination achieved when
sampie sizes of 50 or more are tested at each stress level.

- 6. The fact that the correlation coefficients for the straight
line fits to the static ultiméte strength data for notched specimens -
on the normal and the lognormal bases have no significant difference
( Table 4 ) may again be attributed to the small sample size tested,
namely 10. )

- .7. The phenomenological reasoningvleads to the conclusion
that, wére the cycles-to-failure data those of field failures or only
of the failures from a larger.sampie,all of which were not tested to
. failure, the Weibull distribution would be the most appropriate dis-
' tribution to represent such data. The primary reason fér this is
that such data would be the failures of the weakest of such components

" in field operation or in test,'cOnsequently,_Sgnforming to the extreme-

value distribution theory. ‘The cycles;to—failure data generated in

this research are those of the whole sample being tested to failure;

therefore, the data is that of the weakest, as well as, of the strong-
~est specimens failing, hence not'conforming to the extreme-value theory
represented by the Weibull dlstrlbutlon.
8. Phenomenological reasoning leads to the conclusion that the
cycles-to-failure data at all stress levels .would be best represented
~ by the lognormal distribution, and, except at the highest'alternating
bending stress levels, the lognormal distribution should be used ex-
clusively for the cycles—td—failure data of the type generated in this
" research. | _ ‘ . |
9. Phenomenélogical reasoning also leads to the.conclusion that
at the highest aiternating bending stress levels, the normal distri-
bution can be used to approximate the lognormal distribution. This

proQides a computational advantage when calculating the reliability
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of é component by the design-by-reliability methodology.
' 10. A conclusion of caution is in order when attempts are made
to apply the previous conélﬁsions to test conditions not identical,
or closely related, to those used in the generation of the data for
fhis reseaﬁch;' Moré-ébmpiéx test and fieid loadings will cause fail-
ures not represented. by any one of the following idealized theories:
he weakest link theory, the parallel strand theory and the propor-
" tional effect theory. 'Under these conditions some combination of
these theories would be in effect. The cycles or times-to-failure
data would then exhibit complex behavior not representable by any one
diétbibﬁfion discussed in this report.
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VIII RECOMMENDATIONS

1. There is not enough statistical ev1dence to discriminate

between the normal and the lognormal at most stress levels. This
is thé‘}ééﬁit of test;ng 12 or 18 specimens at €ach stress level.
and reflects the need to test more spe01mens at each stress level:
npreferably 50 or more.

2. A test program should be 1n1t1ated to test the weakest com-—
ponents of a popnierlon and examine the cycles~ to failure behavior
’u31ng the extreme-value distributions. These llfe length distribu-
tions would be of interest to design engineers because itiis the
weakest parts that fail in actual service. _ ‘

3. Research of the type leading to this and the previous three
reports should be continued to acquire the vast data needed for the
effective application of the design-by—reliability methodology.

L4, Statistical distributions which.may represent the more
complex test,or field, loading situations should be dereloped and

studied.
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"TABLE 2

STATIC ULTIMATE AND BREAKING STRENGTH DATA AND
‘ RESULTS FOR NOTCHED SPECIMENS* .
(Stxess ratio = 0) 4

Test - Ultimate Load ~ Breaking Load Ultimate Breaking -
~ No, 1000 1bs. ‘ 1000 1bs. Strength | Strength
: ' ' - psi. ** | psi, **
1 49.3 47,0 253,500 | 305,000
2 49.6 - 4740 © 255,000 | 305,000
3 49.4. | 46,3 | = 254,000 | 299,500
4 50.3 . 4744 _ 259,000 299,500
5 48,8 - 46,0 251,000 | 306,500
"6 49.2 | 46,0 .| 253,000 | 302,500
7 49.6 - | 46.8 = | 255,000 | 304,500
8 49.8 N Y 256,000 | 305,500
9 50.5 - . 4747 260,000 | 309,500
10 49,9 I 471.5 | 256,500 | 302,000
Normal Distribution Parameter; ' o . "Normal Distribution Para=-
of Ultimate Strength of Notched : . meters of Breaking Strength
Specimens: : - : - . of Notched Specimens'
Mean = S = 255,500 psi | Mean = S, = 304,000 psi
Standard Deviation = 6g = 2,500 psi' Standard Devxatlon -
: Un R 63 = 3,000 psi
Bn

*Specimen diameter at the base of the notch is 0.4975 in. which
gives an area of 0.1944 sq. in.

**All strengths rounded to nearest 500 psi.



69

*1sd Q¢ 1s01EOU 2y3 03 popunox sy3z3uaxls TIVx

ng .
1sd 006y = mo ez UOT3IBTA3(Q PAEBPUBRIS 1sd 000°6SZ =g = ueay
fsusurdadg payojouup yo yidusazg Suyyesag Jo savjdweieg coﬂuspauumﬂn TTuION
nf
1sd o<z = Mb = UOT3IBTAd(Q piBpuBis 1sd 000841 al m = UBOY

:susuyoadg paydjouup Jo yaBuaalg a3jewil[n FJO SIdjomelrg uoyINQIAISTQ [EUION

As nx .
1sd 000°¢E = 0 = uorzerAd(Q vumvamum 1sd Q00‘ILT = S = uesy
.mcmsﬂooam vwzouocc: jo Suwcwuum PIPIX JO SI939WeliRd UOIINGTIAISIQ TBULION

005 ‘052 00§ ‘941 . 000 ‘1.1 99.1°0 SSL%°0 (AL AN 2'1¢ €°0¢ o1
000°652 00S°LLT 000°zL1 78L1°0 £€944°0 9°¢Z 9°1¢ 9°0¢ 6
1000°€S2 000°8.1 000¢0LT LLLT*O /Nmm¢.o. (AR T4 yo1e Al 8
000952 000181 000691 0081°0 L8L%°0 0°62 A %°0¢ L
005952 - 006 ‘8L1 000°2L1 rAYAR " Teiyo AL £ 1e 1e0¢ 9
00S ‘%52 000°SLT 000 ‘89T 8LL1*0 85L%*0 6°2¢ 1°1¢€ 6°62 S
oos‘1se 00§ “¥L1 000891 9LLTI°0 <SLv°0 8°2¢ 0°1¢ 807 y
000°6%2 000°8.1 00S ‘zL1 SLILT*0 ¥SLY*0. 4 9°1¢ 9°0€ €
00045z 005941 00S ‘1.1 $8.1°0 ¥9L%°0 S°€T c°1¢ 9°0¢ 4
000492 000 €8T 006°LLT VAR €SLY°0 €42 S ze S*1g 1
x¥sd x1sd x¥sd *ug *ul q1 0001 qT 0001 q1 0001
y38uair3g yi8ua13g ~Yy3zBuaa3s ommum>< ‘38exaAy peOo1 A pEO1 peol °ON
Suyseaag 33ed@I3IN PI92IX eIy I93suet(q Suryeaxg 93ewIlIN PI®IX BEA

(0 = o131 S559211%)

SNINIOHAdS JIHOLONNGI ¥Od mﬁﬂbmmm
QZ< vivd mﬁozmmam ONINVI¥d Qz< FLVILIN ‘aITIX OILVIS

m‘.

419VL



70

©686°0 1686°0 ~ Eh8°Z+X0SE SSZ=X 0€8° Z+X09E°56Z=X - 0
€9L6°0~ LLLE"O 0T6°SZT+XOTL  €Z=X~ 085 °LZT+X0E6°TZ=X 000°0L 0L°0
§996°0 ~ 81860 066°6S+X0EC  ET=X" 0£0°T9+X0SS“TT=X 00s‘9L 0L°0
zsL6°0 - 6LL6"0 0£L°6T+X029°9=X 0L 02+%08L°S=1 005°L6 0,70
SEW6°0 ~ 162670 061°9+%0h0° T=1 - 0S5°9+X000° T=X 005°0TT 0L°0
9Zh6°0 * TE96°0 00T*8ST+X069°Th=A= | 086°TOT+X006°he=X | 000°8L ®
98L6°0 - ZT96°0 S80°LL¥X00E“ET=X ~ | 086°LL+X0SL TT=X 000°L8 ©
TLLE"O - L6L6"0 058° TZ+XOLE® h=X ~ 0LTzz +%056°€=1 005 “+0T ©
T286°0 - 69860 0L6°8+X0ST T=X - 0€80°6+%0L0°T=X 00s°T12T ®
tZL8'0 - 2T06°0 0£L°Z+X009=X .| 08L°Z+X06h=X 000°HST ©
TeuwloudoT TeuaoN 4 (1sd)
Teuxoudo TeuIoN ond otiey
JUSTOT I 400D J0F 3ITJ 3Iseg J0F 3TJ 3sag Mwmhmw SS8Jd3s

UOT3IBToJII0)

. : ‘0 J0 OILVY SSTYLS ¥O0J VIVZ FANTIVI-OL-SSTALS ANV

‘0L°0 QNV ~ JO SOILVY SSIYLS ¥OJ VIVA IINTIVI-OL-SITOXD OL SIII

_'TVIRIONDOT QNV TVAYON 03 SINIIOIIII00 NOILVIIYYOO ANV LI 3NIT Hme¢MHm_

i

# JTIVL




APPENDIX A-1

CONVERSION OF TIMES~TO-FAILURE DATA TO CYCLES-TO-FAILURE

FOR 154,000 PSI ALTERNATING STRESS AND STRESS RATIO «

Item Spec. Machine Time to Cycles to Log Median
No. No. No. N E"a:}lt.me Failure‘ » -Cychs Ranks *
rr.min:sec
1 . 341 1 ~ 0:00:56 1567 7.4188 5.613
2 365 - 1 0501:05 1935 7.5678  13.598
3 342 N 0:01:23 2471 7.8124  21.669
4 193 | 2 0:01:33 2765 7.9248 - 29.758
5 196 2 0:01:37 2884 | 7.9669  27.853
6 204 4 2- 0:01:40 2973 '7.9973  u5.951
7 166 2 _ 0:61:40 2973 ' 7.9973 54,049
8 133 . 2 1 0:01:42 vgoss 8.0173 sé.1u7
9 225 2 0:01:43 3063 8.0271  70.242
10 220 2 0:01:47 3182 8.0653  78.331
1 191 2 0:01:47 . 3182 8.0653  86.402
12 163 2 0:01:50 3271 1 8.0929  9u.387

“(17, Table I)



APPENDIX A-2

[

CONVERSION OF TIMES TO FAILURE DATA TO CYCLES-TO-FAILURE
FOR 121,500 PSI ALTERNATING STRESS AND STRESS RATIO «

Spec. Machine . 'Ijir{le to 'Cch.Les to Loge Median
No. No. Failure Failure Cycles Ranks
P —
96 1. 5 7112 8.8695 3.778
86 1 B 7522 8.9388  9.151
69 1 g 7717 8.9512 14.581
89 1 E 8015 8.9891 20.024
22 1 ': 8088 - | 8.9981 25,471
20 1 f 8376 3.0331 30.921
76 ¥ i 8860 9.0893  36.371
111 1 Q. 8925 9.0966  141.828
101 1 G 9092 9.1151 47.274
73 1 B 9261 1 9.1336 52.726
6l 1 g 9302 9.1380 58177
80 1 2 9362 9.1y 63.629
52 i 0 9747 9.1874 69.079
59 1 T, 9818 9.1920  7u.529
109 1 2 3 3990 9.2093  79.976
82 1 g5 10347 9.2u4Y 85.419
42 1 S o 10353 19.2450  90.8u9
63 1 - &0 10540 19.2630 96.222

72



APPENDIX A-3

CONVERSION OF TIME-TO-FAILURE DATA TO CYCLES-TO-FAILURE
FOR 104,500 PSI ALTERNATING STRESS AND STRESS:  RATIO e«

Spec. Machine Time to Cyc%es to Log'e Median
No. No. Failure fallure Cycles Ranks
: | —
39 1 3 16258 9.6963 3.778
55 1 E 16500 9.7111 9.151
99 o2 & 16920 19,7362  14.581
33 1 E 18136 9.8056  20.02Y
5 o
71 1 5 19352 9.8075  25.471
65 2 0 120576 9.9313  30.921
46 2 o © 21,080 9.9561  36.371
85 2 § 21,192 9.9614  41.823
113 1 ﬁ 21,204 9.9619 . 47.274
26 1 = 225Ul 10.0232 52,726
49 2 . E’ 22886 . 10.0383  58.177
110 1 3 23640 10.0707  63.629
82 2 &) 24,304 110.0984%  69.079
13 2 'g . 25196 10,1344 74,529
- 58 1 a § 27024 10.2045 79.976
88 1 £ 3 27250 10.2128  85.419
62 2 o 2 27464 10.2206  90.849
104 2 (%ﬁ 27,558 10.2241 - 96.222
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APPENDIX A-4

' CONVERSION OF TIMES-TO-FAILURE DATA TO CYCLES-TO-FAILURE’
- FOR 86,000 PSI ALTERNATING STRESS AND STRESS RATIO «

Spec. _Machine = Time to - Cycles to Log Median
No. No. Failure . Failure .Cvchs Ranks
45 1 | 5 60002 11.0021 3.778
T BB 57 11.0799 9.151
102 1 £ 64,997 011.0821  14.581
118 1 A 67,757 11.1237  20.024 -
114 1 o 71166 ~  11.1728  25.u471
29 1 9 71556 11.1782  30.921
35 1 o 71,968 11.1840  36.371
18 1 g 73089 11.199% 41,823
25 1 g 4690 11.2211  47.274
30 1 g 74,698 -11.2212  52.726
31 1 | E’ 75662 11,2340 . 58.177
(o]
e 1 3 78852 11.2753 . 63.629
: ecd . :
70 1 D ~ 82ou8 11.3175  69.079
75 1 3 83812 ©11.3363  74.529
66 1 %é | 86349 11.3662  79.976
48 1 E O 96004 - .11.u722  85.419
19 1 gg 98468  11.4975  90.849
81 1 >3 107415 9 11.5845  96.222




_ "APPENDIX A-5°

“CONVERSION OF TIMES-TO-FAILURE DATA TO CYCLES-TO-FAILURE .
“~"FOR 78,000 PSI ALTERNATING STRESS AND STRESS RATIO ®

12.2310

-éﬁéc. ;ﬁgéﬁiﬁe ‘Time to Cycles to Log, Median
No. "No. “Failure Failure - Cycles Ranks
215 2 0:52:18° 93,303 ©  11.4436 3.718
167 “2 "0:57:58 103,413 11.5465 9.151
121 2. "1:09:35 - 124,187 - 11.7292  14.561
135 2 ‘1:10:36 - 125,950  11.7436  20.024
145 “2 T:11:38° 127,794 11.7582 25.471
198 ) “i:2l:us 145,783 11.8899 30.921
128 “2 i:26:59 - 155,178  11.9523  36.371
156 2 Yis6:3u 172,275 12.0569  41.823
171 2 1:36:4n 172,572 12.0586  47.274
123 2 CLE36:47 . 172,662 12.0591 52.726
159 2 '1:39:30 . 177,508 12.0868  58.177
134 2 “1:39:53 178,192 . 12.0906  63.629
183 ] 1:52:30 132;560 12.1165 - 69.079
186 -2 1:42:45 '183;306, ©12.1189 74.529
214 2 1:49:46 195,824 - 12.1850 79.976
125 2 © 1:50:22 196,894 12.1904 85.419
148 2 1:53:48 203,019 12.2211  90.849
219 2 1:54:56 205,041 96.

222
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~ APPENDIX A-6

' © CONVERSION OF TIMES-TO-FAILURE DATA TO CYCLES-TO-FAILURE
ALTERNATING STRESS AND STRESS RATIO 0.70

_FOR'110,500 PST

"Spec. Machine 'Timé to Cyclés to Log, ~ Median
3_ No. =Now ~§‘_a§i;1_1re Failure Cycles Ranks
.=f§g7»44~fi~4ﬁf¢¥'*‘*”“cfpgsol f 5,388 8.5919 5.613
<395 1 0:03:00 5,626 8.6351 - 13.598
“h32 1 0:03:18 . 5,894 8.6817 21.669
“ 387 1 0:03:23 6,043 8.7067  29.758
Cass 1 0:03:24 6,072 8.7114  37.853
“3s58 "1 0:03i25 6,102 8.7164 45.951
Case 1 0:08:27 6,162 . 8.7262 54.049
1392 1 0:03:29 6,221 8.7357. 62.147
“35y 1 10:03:52 6,906 8.81401 70.242
1406 1 0:04:22 7,799 8.9617  78.331
390 1. 0:04:23 7,899 8.9656 86.402
“345 1 0:04:49 8,603 © 9.0599 94,387
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APPENDIX A-7

CONVERSION OF TIMES-TO-FAILURE DATA TO CYCLES-TO-FAILURE -
FOR 97,500 PSI ALTERNATING STRESS AND STRESS RATIO 0.70

- Spec. Machine  Time to Cycles to Log, Median
No. No." Failure . Failure Cycles Ranks
254 3 ©0:07:17 12,964 9.4699 3.778
423 1 0:07:18 13,038 9.4756  9.151
408, 1 0:07:29 18,365  .9.5004 14,581

379 1 | 0:07:45 13,842 9.5355 20.02t
367. 1 0:08:20 14,883 -9.6080 25.471
370 1 0:09:21 16,699 9.7231  30.921
314 3 0:10:44 19,105 . 9.8577 36.371
237 2 0:11:19 20,189 9.9129  141.823
307 3 0:11:21 20,203 9.9136  47.274

292 2 0:11:28 20,457  9.9261 52.726
261 2 0:11:48 - 21,004 9.9526  58.177
256 3 0:12:59 23,110  10.0480 63.629
274 3 0:13:41 24,356 10.1005  69.079
262 3 0:13:51 24,653 10.1127  74.529
312 3 0:14:03 125,009 10.1270 79.976
258 3 0:14:08 125,157 © 10.1328  85.419
227 3 0:15:52 28,243 - 10.2u86 90. 849
295 3 10:18:03 3775 96.222

:18:

32,129

10.
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" APPENDIX A-8

CONVERSION OF TIMES~TO-FAILURE DATA TO. CYCLES-TO-FAILURE
FOR 76,500 PSI ALTERNATING STRESS AND STRESS RATIO 0.70

Machine

Cyéles to

_Sbec.  Time to Log, Median
No. No. Failure ~-Failure - ‘Cycles Ranks
1382 1 ©.0:22:09 39,560 -~ 10.5856 3.778
4yl 1 0:24:36 43,936  10.6905 9.151°
416 1 10:26:01 46,466 10.7465 14.581
405 1 10:26:38 47,567 10.7699 20.024
471 1 0:29:30 52,687  10.8721 25.471
363 1 - 0:32:41 58,372 10.9746 30.921
11 1 0:33:35 59,980  11.0018 36.371

427 1 0:33:35 59,980 11.0018 41.823
285 3 0:3u:43 61,796  11.0316  47.274
g 1 0:34:51 62,242  11.0388 52.726
1200 1 10:36:52 ‘ss,suﬁ 11.0981 58.177

Casy 1 ©0:37:51 67,491  11.1214 63.629
277 3 0:37:55 67,600 11.1298  §9.079
185 1 0:38:43 69,184 11.1440 74.529
218 1 0:39:18 60,190 °  11.1590 79.976
176 1 0:40:19 72,006 11.1845 85.419
326 3 0:42:35 75,798 11.2358 90.849
172 1 0:43:35 11.2624 96.222

77,840
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APPENDIX A-9

CONVERSION OF TIMES~-TO~FAILURE DATA TO CYCLES—TO-FAILURE.
FOR 70,000 PSI ALTERNATING STRESS AND STRESS RATIO 0.70

_ Spec.

Machine  Time to Cycles to LOge Median

No. ‘No. Failure Failure Cycles Ranks
272 3 0:55:50 99,383  11.5067 3.778
385 1 0:56:29 100,879 11.5217 9.151
321 3 0:56:51 101,183  11.5248 14.581
360 1 0:58:09 . 103,856 11.5508 20,024
327 3 0:58:38 104,367 11.5557 25.471
442 1 T 1:02:04 110,851 11.6160 . 30.921
268 3 ©1:06:16 117,955 11.6781 36.371
229 3 1:07:44 120,565 11,7000  41.823
304 3 1:12:36 129,228 11.7693 47,274
230 3 1:14:08 131,957 11.7902 52.726
231 3 1:16:23 135,962 11.8201 58.177
228 3 1:17:09 137,327 11.8301 63.629
337 ‘I 1:18:35 . 140,350  11.8518 . 69.079
413 1 1:19: 44 142,404 11,8664 74,529
247 3 1:20:27 143,201 11.8720 79.976
287 2 1:24:03 149,945  11.9180° 85.419
255 3 1:29:29 159,280 11.978k 90.849
232 3 - 1:34:14 167,735 12,0301 196.222

-
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